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Abstract
We investigate the phase behaviour of binary symmetric lattice fluid, exhibiting
partial demixing in slitlike pores with heterogeneous walls. The calculations
are carried out assuming a cubic lattice with vacancies and a model for
heterogeneity similar to that of Röcken and Tarazona (1996 J. Chem. Phys. 105
2034). We concentrate on the effects of surface heterogeneity on the scenarios
for the phase transformations. It is shown that for wide enough pores a step-
wise condensation occurs between demixed phases. For narrower pores the
λ-line may cross the boundaries of the bridge phase and multiple critical end
points appear. In such cases, at low temperatures the bridge phase formation
occurs between demixed phases, at intermediate temperature it involves mixed
and demixed phases and finally it becomes a transition between two demixed
phases again.

1. Introduction

Surface heterogeneity is an important intrinsic property of adsorbing surfaces. Its presence
yields qualitative changes in the behaviour of adsorbed phases, in comparison with phases
growing on uniform substrates [1]. Several attempts have been undertaken to characterize
heterogeneous surfaces at qualitative and quantitative levels with a reasonable efficiency [1, 2].
In the case of real adsorbing surfaces, the effects of chemical and geometrical heterogeneities
are strongly interconnected in a nontrivial manner. However, modelling of heterogeneous
adsorbents usually involves assumption of only one type of heterogeneity: energetic or
geometrical. Recently, it has become possible to produce solid substrates with controlled
nonuniformity. In particular, the advance of technology allows us to construct axially
nonuniform adsorbents, i.e. in which the adsorption potential varies only along one of the
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axes parallel to the surface [3–6]. The interest in such systems stems from the possibility of
development of suitable theoretical approaches. In fact, there exists an abundant literature
concerning theoretical study of adsorption at single walls, as well as in porous systems, see
e.g. [7–14].

A few years ago Röcken and Tarazona [9] investigated capillary condensation in slitlike
pores with structured (i.e. energetically heterogeneous) walls in the framework of a lattice
model within a mean-field approximation. To mimic chemical inhomogeneity of real
adsorbents [3–6] the adsorbing potential was described by a periodic function along one of
the axes parallel to the pore wall. They observed a new mechanism of capillary condensation,
characterized by a splitting of the usual capillary condensation coexistence envelope into two
branches. One of the phases formed during that process was called ‘a bridge phase’, because
resulting dense adsorbate phases filled only a part (along one of the axes parallel to the pore
wall) of the pore, building a kind of bridge between two solid pore walls. Further increase
of the bulk gas density (or chemical potential) resulted in the filling of the remaining parts of
the pore with a dense, condensed adsorbate. Obviously, the latter process was usual capillary
condensation. In subsequent works this model has been generalized to the case of lattice-off
systems and studied by means of a density functional theory [9–12]. Both lattice and lattice-off
approaches yielded quite similar results and led to qualitatively the same topology of the phase
diagrams. Later, similar investigations have been also carried out for one-component fluids
with associative interactions [11]. All these studies have revealed a rich variety of possible
phase transitions. In addition to the formation of bridge phases, layering-type transitions could
also be observed. These transitions take place within consecutive layers adjacent to the pore
walls and their occurrence and the number depend on the strength of the fluid–solid potential, as
well as on the pore size. Wider discussion of the phase transitions in pores with heterogeneous
walls can be found in [8–12].

From the fundamental, as well as from the applicational, point of view the investigation
of adsorption of fluid mixtures is much more important than of single-component fluids.
Structural and thermodynamicbehaviour of bulk mixtures is quite complex [15–20]. Particular
classes of mixtures manifest an interplay between the liquid–vapour and demixing transitions.
Very recently we have undertaken investigation of the phase behaviour of such fluids in slitlike
pores with energetically homogeneous walls by using a density functional approach. The
application of that methodology to the case of pores with structured walls would result in
time consuming computations, which then would prohibit the study of the phase behaviour
in detail. Therefore, we have decided to simplify the modelling of mixtures adsorbed
in heterogeneous pores and to apply a lattice model, in conjunction with a mean-field
approximation. Nevertheless, such simplification should not lead to a loss of the principal
physical phenomena we want to study.

The aim of the present work is to determine the phase diagrams for model binary
lattice fluids in narrow slitlike pores with energetically nonuniform walls within a mean-
field approximation. For simplicity and for transparency of interpretation of the results, we
reduce the number of the parameters of the model to a minimum, by choosing the fluid–
solid potential independent of the adsorbate species. The model of energetic heterogeneity is
similar to that used by Röcken and Tarazona [9]. Moreover, we investigate only the model
fluids with the cross interaction energy parameter low enough to ensure demixing over a
wide range of temperatures and densities. The theory we apply was originally formulated
by Lane [21]. Similar approaches have been subsequently applied in numerous studies of
nonuniform systems [22–26]. Our principal aim is to study the formation of bridge phases
and capillary condensation, as well as an interplay between these transitions and demixing
inside the pore. For that reason a detailed discussion of possible layering transitions has
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been omitted. Layering transitions are single-wall phenomena and their investigation by using
computer simulations, as well as with the help of different theoretical approaches, has been
postponed to a subsequent work.

2. Theory

Let us formulate the model first. We consider a binary fluid mixture of species ‘1’ and ‘2’ on
a cubic lattice with vacancies (cf [21]), confined within a slitlike pore of width Lz . Each wall
exerts the potential that varies in two directions, perpendicular, i , and parallel, j , to the pore
wall, but is independent of the kind of adsorbate particles. Its functional form is analogous to
that used by Röcken and Tarazona [9] in their studies of adsorption of a one-component fluid

v′( j, i) = v0(i)[1 + av1( j)], (1)

where v0(i) is the homogeneous part of the adsorbing potential and v1( j) is its periodic
modulation. The integers i and j denote the consecutive lattice number along the directions
perpendicular and parallel to the pore walls, respectively. The parameter a modifies the
contribution due to the periodic part. The homogeneous and periodic parts are given by the
following equation:

v0(i) = εgs/ i 3, (2)

and

v1( j) = cos(2π Lx/j), (3)

respectively. In the above Lx is the periodicity of the potential. The total adsorption energy
is the sum of the contributions from the two pore walls. The first wall is a plane at i = 0,
whereas the second wall is located at i = Lz . Consequently, the total adsorbing potential is
v( j, i) = v′( j, i)+v′( j, Lz −i) for i = 1, 2, . . . , Lz −1 and thus the number of layers available
to adsorbate particles is Lz − 1. We are aware that the model which assumes the independence
of the adsorbing potential of the kind of particles is somewhat artificial. However, the aim of
the present study is to determine possible categories of the phase diagrams and for that purpose
starting with a model as simple as possible seems to be the best choice.

We denote by lx , ly and lz the number of the nearest neighbours in x , y and z directions,
respectively. For a cubic lattice lx = ly = lz = 2. No more than one molecule is permitted at
a given lattice site and each pair of molecules in adjacent sites contributes the energy ε11, ε22

or ε12 to the total potential energy, depending on the kind of interacting species.
Because of infinite repulsions (cf equation (1)), no particles can occupy the layers 0 and

Lz . According to the symmetric model of the mixture, the energies εii(i = 1, 2) are identical,
ε11 = ε22 ≡ ε. For the fluid exhibiting a partial mixing, the energy ε12 must be lower than ε.
We use ε as the energy unit; thus the reduced temperature is defined as T ∗ = kT/ε.

The confined fluid is in contact with a bulk fluid. The total density (occupation number)
of the bulk fluid is ρ = ρ1 + ρ2, where ρα is the density of the species α. The mole fraction of
the bulk fluid is abbreviated as x = ρ1/ρ.

It can be shown that in the mean-field approximation the grand potential (per layer in the
y direction and per period Lx) of the system is (cf [21–26])

� =
∑

α=1,2

Lx∑
j=0

Lz∑
i=0

{v( j, i)ρα( j, i) − µαρα( j, i)} + kT
Lx∑
j=0

Lz∑
i=0

{ρ1( j, i) ln ρ1( j, i)

+ ρ2( j, i) ln ρ2( j, i) + [1 − ρ1( j, i) − ρ2( j, i)] ln[1 − ρ1( j, i)
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− ρ2( j, i)]} − ε

2∑
α=1

Lx∑
j=0

Lz∑
i=0

ρα( j, i)[ρα( j, i − 1)

+ ρα( j, i + 1) + 2(ρα( j − 1, i) + ρα( j + 1, i))]

− ε12

Lx∑
j=0

Lz∑
i=0

ρ2( j, i)[ρ1( j, i − 1) + ρ1( j, i + 1) + 2(ρ1( j − 1, i)

+ ρ1( j + 1, i))] − ε12

Lx∑
j=0

Lz∑
i=0

ρ1( j, i)[ρ2( j, i − 1) + ρ2( j, i + 1)

+ 2(ρ2( j − 1, i) + ρ2( j + 1, i))] (4)

where µα and ρα( j, i) are the chemical potential and the local density of the species α,
respectively.

The equilibrium density profile is obtained by minimizing �. The condition
δ�/δρα( j, i) = 0 leads to the following set of equations:

ρ1( j, i) = a1( j, i)

1 + a1( j, i) + a2( j, i)
(5)

where

ln a1( j, i) = µ1

kT
+ ε[ρ1( j, i − 1) + ρ1( j, i + 1) + 2(ρ1( j − 1, i) + ρ1( j + 1, i))]

+ ε12[ρ2( j, i − 1) + ρ2( j, i + 1) + 2(ρ2( j − 1, i)

+ ρ2( j + 1, i))] − v( j, i)

kT
. (6)

The corresponding equations for ρ2( j, i) and a2( j, i) can be easily written down by changing
appropriately the species indices. The chemical potential of species 1 in a bulk system is

µ1 = kT ln

[
ρ1

1 − ρ

]
− (lx + ly + lz)(ερ1 − ε12ρ2). (7)

The average density of the confined fluid is computed as

〈ρ〉 = 〈ρ1〉 + 〈ρ2〉 (8)

where

〈ρα〉 = 1

Lx Lz

Lx∑
j=0

Lz∑
i=0

ρα( j, i). (9)

Moreover, we introduce the symbol S to abbreviate the adsorption selectivity

S = 〈ρ1〉/〈ρ〉. (10)

To solve the density profile equations (5) one may apply a standard iteration procedure.
However, quite recently Aranovich and Donohue [23, 24] proposed a new numerical algorithm
to obtain multiple solutions of equation (5). They have demonstrated that their method gives
the entire equilibrium curve, including points which determine wetting transitions and capillary
condensation. We have adapted this method for our purposes.

The phase transition points have been determined by investigating the dependence of �

on the chemical potentials of both species. At the transition point the excess grand potentials,
� − �b, as well as the chemical potentials of two species in coexisting phases, must be
identical. In the above �b is the grand potential of the bulk fluid (given by equation (2) with
local densities being equal to the bulk densities everywhere). Moreover, we have examined
the density profiles of different phases.
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Figure 1. The phase diagram of the bulk fluid in the T ∗–ρb plane for the model mixture with
ε12 = 0.5.

3. Results and discussion

We consider a model fluid with ε12 = 0.5 and assume that the adsorption takes place from a
gas phase at an equimolar composition, x = 0.5. To characterize the bulk system, we have
evaluated the corresponding phase diagram, under the assumption that the composition of
the rarefied phase is x = 0.5 (cf figure 1). The bulk fluid exhibits the critical point at the
temperature of T ∗

c � 1.12. At the so-called critical end point temperature, T ∗
CE P � 1.08,

the λ-line, that represents the demixing transition, departs from the liquid–vapour envelope.
At the temperatures below T ∗

CE P the condensation leads to a demixed fluid, whereas at
T ∗

CE P < T ∗ < T ∗
c the composition of the condensed phase is identical to that of the rarefied

phase, x = 0.5.
The first calculation for confined mixtures has been performed for the pore with

Lz = 10, Lx = 40, εgs = 2. The phase diagram for energetically uniform walls (a = 0)

has been confronted with those evaluated for the systems of increasing energetic heterogeneity
(a = 0.2, 0.4 and 0.6). Figure 2(a) shows the average density–temperature projections of
the phase diagrams for the uniform and the heterogeneous system, characterized by a = 0.2.
The phase diagrams have been evaluated in a usual manner, i.e. at each temperature we have
plotted the values of the grand potential as a function of the chemical potential. The branches
of the grand potential correspond to the consecutive branches of adsorption isotherms. A
thermodynamically stable state corresponds to a minimum value of the grand potential. This
point is illustrated in figure 2(b), where the arrows in the upper part indicate the equilibrium
transition points; they correspond to jumps in the adsorption isotherm, displayed in the lower
part of the plot. Identification of the coexisting phases has been carried out by a careful
inspection of the density profiles. An identical procedure has been used for all the systems
under study at all investigated temperatures.

In the case of uniform pore walls the phase diagram is composed of three branches,
representing the two layering transitions and the capillary condensation. The first layering
transition terminates at the tricritical point, at which the λ-line begins, while the remaining
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Figure 2. (a) A comparison of the phase diagrams for the pore with uniform walls—curves with
open circles, and heterogeneous walls (a = 0.2)—curves with filled circles. (b) An example of
the adsorption isotherm at T ∗ = 0.6 for the system with a = 0.2 (lower part) and of the grand
potential �′ = �/AkT per unit surface area, A, of the pore wall (upper part). Arrows indicate
the transition points. Thermodynamically stable parts of the isotherm are decorated with black
circles. (c) Density profiles of two species (curves and curves decorated with points) at T = 1.06
at the bulk density ρb = 0.1926 just before the final capillary condensation in the system with
a = 0.2. (d) The phase diagrams for two values of a, a = 0.4 (lines with open squares) and
a = 0.6 (curves with filled circles). (e) The chemical potential—temperature projection for the
system with a = 0.6. In all cases Lz = 10, Lx = 40 and εgs = 2.
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transitions end at their respective critical points. This first phase diagram envelope is associated
with the filling of the first layers adjacent to the pore walls. The second layering transition
(counting from the side of low averaged densities) is associated with the filling of the second
layer at each pore wall. The triple-point temperature separating the first and the second layering
transitions is low. Performing the calculations at T ∗ = 0.4 we still observed the existence
of both layering transitions. This means that the triple-point temperature is lower than 0.4.
However, we did not evaluate low-temperature parts of the phase diagrams and did not study
the layering transitions in detail, because these transitions are a single-wall phenomenon and
the principal aim of this work has been associated with the investigation of phase transitions
specific for adsorption in pores.

The high-density boundary of the second layering transition lies very close to the low-
density branch of the capillary condensation. At temperatures higher than T ∗ ≈ 0.68 the
branches of the second layering transition and of the capillary condensation are separated;
at lower temperatures they join together. Thus, the triple-point temperature separating the
branches of the second layering and of the capillary condensation is approximately equal to
0.68. Note also that because the λ-line starts at the tricritical point of the first layering transition,
the second layering and the capillary condensation transitions are between two demixed states.
In contrast, the first layering transition occurs between a mixed (low-density) phase and a
demixed layer.

The introduction of small modulation to the adsorption potential,characterized by a = 0.2,
leads to substantial changes in the form of the phase diagram and also changes the scenario
of the observed phase transformations. Inspection of the structure of the confined phases,
characterized by the local densities, has revealed that the first branch (from the side of low
averaged densities) is associated with the layering-type transition, taking place only over the
most energetic parts of the surface (for the sake of brevity, we do not present the relevant local
density plots here). This part of the diagram ends at the tricritical point and the tricritical point
temperature is close to 0.68. Obviously, this ‘partial’ layering transition occurs between mixed
and demixed phases. However, all remaining transitions are between two demixed states.

The second part of the diagram (at average densities in the range [0.19, 0.24]) is associated
with the filling of the remaining sites, located within the first layer adjacent to the pore wall.
The critical temperature of this transition is slightly lower than the first layering transition
in a homogeneous case. The next branch, however, corresponds to the layering transition
within the second layers at both pore walls and after this transition the second (and, of course,
the first) layer is filled entirely. The triple-point temperature between the second layering
transition and the capillary condensation is also lower than in the homogeneous pore case.
Our estimation is that this temperature is approximately 0.57. Another important difference
is connected with the development of the bridge phase which, however, is separated from the
capillary condensation branch only at sufficiently high temperatures, above the triple point.
The triple-point temperature is approximately equal to 1.05. The critical temperatures of
the bridge phase and the capillary condensation are close to one another and also close to
(although marginally lower than) the critical temperature of the capillary condensation in the
homogeneous pore. The structure of the adsorbed fluid after the bridge phase formation, but
before the final capillary condensation, is shown in figure 2(c). Compared with a homogeneous
pore, the λ-line is moved toward lower average densities.

Further increase of the surface potential modulation, to a = 0.4 and 0.6 (cf figure 2(d)),
results in deepening of the changes observed for a weakly heterogeneous pore of a = 0.2.
Namely, the λ-line again shifts in the direction of lower average densities, the triple-point
temperature between the bridge and capillary condensation decreases and for a = 0.6 it falls
well below the lowest temperature considered (or does not exist at all; at T = 0.4 we have
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still observed the existence of two, well separated braches). Heterogeneity does not seem to
have a pronounced effect on the critical temperatures of the bridge phase and the capillary
condensation. However, there is one important difference compared with the case of a = 0.2.
For both values of a = 0.4 and 0.6 the first branch of the phase diagram is associated with
the layering transition within the first layer over the most energetic parts of the surface. The
second branch, however, is for the layering transition, taking place within the second layer,
but still over the most energetic adsorbing sites, whereas in the case of a = 0.2 the second
branch corresponds to the filling of the low-energy sites within the first layer. This quantitative
difference in the phase behaviour explains why the critical temperatures of the second branch
of the phase diagram for a = 0.2 and for a = 0.4 and 0.6 behave in a non-monotonic manner.
We stress again: after that transition the low-energy sites, located within the second and within
the first layers, remain empty. They are filled during the next phase transition. The triple-point
temperatures between the first and the second branches, as well as between the second branch
and the capillary condensation envelope, if they exist, are quite low. When the heterogeneity
parameter a increases, the two ‘partial’-layering transitions (‘partial’ because they do not obey
the entire layers, but only the sites over the most energetic surface centres) are shifted toward
lower average densities.

As we have already noted, the λ-line is also shifted in the direction of low average
densities as a increases. It starts at the tricritical point of the first ‘partial’ layering transition.
For a = 0.4 the tricritical point occurs at temperature close to 0.69 and for a = 0.6 at
temperature approximately equal to ≈0.71. Therefore, we conclude (cf also figure 2(a)) that
the heterogeneity slightly increases the tricritical point temperature.

The main part of the phase diagram is connected with a filling of the entire pore. It
means that this part of the diagram is also associated with the filling of the first- and of the
second-layer sites, located over weakly attractive sites on the surface. Already for a = 0.4
we observe the formation of a bridge phase at sufficiently high temperatures, which results in
splitting the coexistence envelope into two parts. These two parts meet at the triple point, so
that at still lower temperatures the capillary condensation becomes a one-step process. Above
the triple-point temperature (equal approximately to 0.98 for a = 0.4), the adsorbed phase
fills the bridges over the most energetic parts of the surface. However, all sites over weakly
adsorbing parts remain only partially filled (within the first layer) or nearly completely empty
(within the consecutive layers). They are finally filled during the second step of the capillary
condensation.

The increase of a leads to rather abrupt lowering of the triple-point temperatures. Thus,
for a = 0.6 we observe a complete separation of the two steps of the condensation process
over the entire range of the temperatures used. This separation has been also observed at
temperature as low as 0.4. Therefore, the triple point between the bridge phase formation and
the capillary condensation, if exists at all, would appear at a quite low temperature.

Figure 2(e) brings an example of the chemical potential–temperature projection of the
phase diagram for a = 0.6, which also clearly demonstrates the separation of different phases.

The effect of the period length, Lx , on the phase behaviour is illustrated in figure 3, which
shows the density–temperaturephase diagrams, obtained for εgs = 2, a = 0.8 and Lx = 22, 40
and 80. The scenario of the phase transformations is the same as for a = 0.6 in figure 2(c). We
observe that the λ-line is only weakly affected by the value of Lx and slightly moves toward
higher average densities as Lx decreases. Again, the λ-line begins at the tricritical point,
ending the first, partial layering. In particular, for the largest value of the period, Lx = 80,
the tricritical temperature is about 0.72. For lower values of Lx the tricritical point is shifted
toward lower temperatures: for Lx = 40 it appears at the temperature approximately equal to
0.715, whereas for Lx = 22 at T ∗ ≈ 0.64.
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Figure 3. The phase diagrams for Lz = 10, εgs = 2, a = 0.8 and Lx = 22 (curves with triangles),
Lx = 40 (curves with squares) and Lx = 80 (curves with circles).

The second ‘partial’ layering transition, which similarly as previously is the transition
within the second layer sites over the highly energetic parts of the surface, is slightly affected
by the change of the period length and shifts in the direction of lower average densities with
increasing Lx . After that transition weakly energetic sites within the first layer remain still
incompletely filled. On the other hand, the locations of the bridge phase and of the capillary
condensation parts depend considerably more strongly on Lx . The increase of Lx results in
a more pronounced separation of those two branches of the phase diagram. Decreasing the
temperature to T ∗ = 0.4 we still have not observed any triple points between the layering,
bridge phase and capillary condensation branches for the chosen values of energetic parameters.
Those points, if they exist, may appear at quite low temperatures.

Four panels of figure 4 present local density surfaces for the system εgs = 2, a = 0.8,
Lx = 40 and Lz = 10, obtained at the temperature of T ∗ = 0.7 and at different densities.
Figure 4(a) illustrates an early stage of continuous demixing (〈ρ〉 = 0.094). Only the strongly
adsorbing sites of the layers adjacent to the pore walls are partially filled. The density profiles of
components 1 and 2 at 〈ρ〉 = 0.574, i.e. in the region between the bridge phase and the capillary
condensation coexistence, are given in figures 4(b) and (c), respectively. The bridge phase is
mainly composed of one component, while the second component accumulates mostly at the
boundary region of the bridge phase, as well as in the surface region over weakly adsorbing
sites. Finally, figure 4(d) shows the density profiles of both species, obtained at the state point
after the capillary condensation, 〈ρ〉 = 0.992. In this case the demixing is nearly completed.
Of course, the density profile for the dense phase filling the entire pore is almost insensitive to
the lateral variation of the surface field.

The effect of the pore width on the phase behaviour is illustrated in figure 5, which
shows the results evaluated for two different values of Lz = 7 and 10 and the fixed values
of all remaining parameters (εgs = 2, a = 0.4 and Lx = 40). The results for Lz = 10
have already been presented (figure 2(d)) and discussed. The lowering of the pore width
to Lz = 7 considerably changes the conditions at which the bridge phase and the capillary
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Figure 4. Examples of the local density surfaces for the system with Lz = 10, εgs = 2, a = 0.6 and
Lx = 40 at three state points. (a) After the λ-line, 〈ρ〉 = 0.094. (b), (c) Density surfaces for both
components after the bridge phase formation, 〈ρ〉 = 0.574. (d) After the capillary condensation,
〈ρ〉 = 0.992. Solid and dashed lines are for different components.

condensation take place. The low-density boundary for the bridge phase coexistence moves
toward lower average densities and the entire bridge phase envelope decouples from the
capillary condensation coexistence. Moreover, the second ‘partial’ layering transition (within
the second layer), present for Lz = 10, vanishes for Lz = 7. Therefore, the sequence of the
phase transformations for Lz = 7 is the following. At low temperatures we first observe the
first partial layering, which takes place over the most energetic centres within the first layer.
This transition ends at the tricritical temperature, which is very close to 0.7 and thus it is
slightly higher that for Lz = 10. Compared with the pore of Lz = 10, the λ-line moves in the
direction of higher average densities. The second transition in the pore of Lz = 7 is associated
with the formation of bridges ‘connecting’ the highly energetic sites at both pore walls. After
that transition, the sites located over weakly attracting surface centres remain only partially
filled. Final filling of those sites occurs during the second stage of the capillary condensation.
For Lz = 7 the triple-point temperature between bridge phase formation and the capillary
condensation is strongly reduced (or the triple point does not exist at all; two branches have
been also observed at T ∗ = 0.4).

Figure 6 illustrates some interesting changes in the form of the phase diagram due to
changes in the homogeneous part of the adsorption energy. The results presented here have been
obtained for the systems with εgs = 1, a = 0.6, Lx = 40 and Lz = 7, i.e. the homogeneous
part of the adsorption potential is twice as weak as in the cases considered so far. Even in the
case of weaker adsorbing walls, as compared to the results shown previously, the filling of the
pore occurs in two steps. The first step corresponds to the bridge phase formation. The second
step is the capillary condensation. Similarly as previously we also observe the existence of the
partial layering transition within the first layer. This layering transition ends at the tricritical
temperature, which is close to 0.66.
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Figure 5. The phase diagrams for Lx = 40, εgs = 2, a = 0.4 and Lz = 10 (curves with circles)
and Lx = 7 (curves with squares).
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Figure 6. The phase diagrams for Lx = 40, εgs = 1, a = 0.6 and Lx = 7.

To illustrate the scenario of the phase transformations at low temperatures we have included
the plots of the density profiles at some selected state points at T ∗ = 0.6. Figures 7(a) and (b)
show respectively the profiles of both components just before and just after the first, partial
layering transition, ρb = 0.003 28. The profiles in figure 7(a) flow together; the adsorbed
phase is mixed. In figure 7(b) the first layer over the most energetic surface centres is filled.
All remaining sites inside the pore remain nearly empty. The adsorbed phase is demixed.
Figure 7(c) gives an insight into the structure of the adsorbed fluid just after the bridge phase
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Figure 7. Examples of the local densities for the system shown in figure 6 at T ∗ = 0.6. (a) and
(b) show the structure just before and just after the first partial layering transition, ρb = 0.003 28,
(c) after the bridge phase formation, ρb = 0.0081, and (d) just before the capillary condensation,
ρb = 0.015 76. The profile of one component in (b), (c) and (d) is shown by a line decorated with
points. In (a) the profiles of both components flow together.

formation, ρb = 0.0081. All the sites over weakly adsorbing surface centres are nearly empty.
Obviously, the adsorbed phase is demixed. Finally, figure 7(d) shows the situation just before
the final capillary condensation, ρb = 0.015 76. The weakly adsorbing sites still remain nearly
empty. Capillary condensation causes these sites to be filled. After the capillary condensation
the structure of the adsorbed fluid is almost independent of the lateral changes of the adsorption
potential (cf figure 4(d)).

An interesting observation concerns the behaviour of the λ-line. Namely, this line crosses
the bridge part of the phase diagram. Therefore, two, lower and upper, critical end points appear.
In consequence, the character of the bridge phase formation changes with temperature. At
temperatures below the lower critical end point the transition is between two demixed phases.
Over the temperature range between the two critical end points the transition leads from a
mixed to demixed phase. Finally, above the upper critical end point (but, of course, below the
critical point) the transition again takes place between two demixed phases.

To conclude, we have investigated the phase behaviour of the lattice binary symmetric
mixture confined to energetically heterogeneous slitlike pores by using the mean-field
approach. The bulk model is characterized by weak interaction between unlike particles that
results in an interplay between the first-order and continuous demixing transitions. In confined
systems condensation occurs in several steps. It consists of layering transitions, the bridge
phase formation and, finally, the filling of the entire pore if the adsorbing field is strong enough.
Energetic heterogeneity drives the layering branches narrower because the condensed phases
occur only over the strongly adsorbing parts of the pore walls. The λ-line of the demixing
transition shifts to lower average densities as compared to the pore with homogeneous walls.
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It starts at the coexistence curve of the first layering transition. In the systems studied it
always begins at the tricritical point. However, it is possible that the beginning of this line
may be located at the critical end point. The position of that line is less sensitive to energetic
heterogeneity compared to the first-order transitions. For Lz large enough (in our case for
Lz = 10) a step-wise condensation occurs between demixed phases. For narrower pores,
however, the λ-line may cross the boundaries of the bridge phase and multiple critical end
points appear. In such cases, the bridge phase formation occurs via re-entrant transition in
the following way. At low temperatures the transition takes place between demixed phases,
at intermediate temperature it involves mixed and demixed phases and finally it becomes a
transition between two demixed phases again. Our computations have been performed for
a specific model. One should take into account that changing the model of the mixture, or
the model of the surface heterogeneity, may result in different kinds of phase behaviour of
confined mixtures.
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